Презентация Излучение и Спектры 11 Класс

Презентация Излучение и Спектры 11 Класс.rar
Закачек 2801
Средняя скорость 5353 Kb/s
Скачать

Презентация Излучение и Спектры 11 Класс

Данная презентация помогает учителю более наглядно провести урок -лекцию в 11 классе по физике при изучениии темы «Излучения и спектры». Знакомит учащихся с различными видами спектров, спектральным анализом, шкалой электромагнитных излучений.

Предварительный просмотр:

Подписи к слайдам:

Излучение и с п е к т р ы Казанцева Т.Р. учитель физики высшей категории МКОУ Луговской СОШ Зонального района Алтайского края Урок – лекция 11 класс

Всё, что видим мы, — видимость только одна, Далеко от поверхности мира до дна. Полагай несущественным явное в мире, Ибо тайная сущность вещей не видна. Шекспир

1. Познакомить учащихся с различными видами излучений, их источниками. 2. Показать разные виды спектров, их практическое использование. 3. Шкала электромагнитный излучений. Зависимость свойств излучений от частоты, длины волны. Цели урока:

Источники света Холодные Горячие электролюминесценция фотолюминесценция катодолюминесценция лампы дневного света газоразрядные трубки огни святого Эльма полярные сияния свечение экранов плазменных телевизоров фосфор краски свечение экранов телевизо ров с ЭЛТ некоторые глубоководные рыбы микроорганизмы Солнце лампа накаливания пламя светлячки трупные газы тепловые х емилюминесценция

Это излучение нагретых тел. Тепловое излучение, согласно Максвеллу, обусловлено колебаниями электрических зарядов в молекулах вещества, из которых состоит тело. Тепловое излучение

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Часть энергии идёт на возбуждение атомов. Возбуждённые атомы отдают энергию в виде световых волн.

Катодолюминесценция Свечение твёрдых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция Излучение, сопровождающее некоторые химические реакции. Источник света остаётся холодным.

Сергей Иванович Вавилов — российский физик. Родился 24 марта 1891 г. в Москве Сергей Вавилов в Институте физики и биофизики начал эксперименты по оптике — поглощению и испусканию света элементарными молекулярными системами. Вавиловым были изучены основные закономерности фотолюминесценции. Вавиловым, его сотрудниками и учениками осуществлено практическое применение люминесценции: люминесцентный анализ, люминесцентная микроскопия, создание экономичных люминесцентных источников света, экранов Фотолюминесценция Некоторые тела сами начинают светиться под действием падающего на них излучения. Светящиеся краски, игрушки, лампы дневного света.

Плотность излучаемой энергии нагретыми телами, согласно теории Максвелла, должна увеличиваться при увеличении частоты (при уменьшении длины волны). Однако опыт показывает, что при больших частотах (малых длинах волн) она уменьшается. Абсолютно чёрным телом называется тело, которое полностью поглощает падающую на него энергию. В природе абсолютно чёрных тел нет. Наибольшую энергию поглощают сажа и чёрный бархат. Распределение энергии в спектре

Приборы, с помощью которых можно получить чёткий спектр, который затем можно исследовать, называются спектральными приборами . К ним относятся спектроскоп, спектрограф.

Виды спектров 2.Полосатые в газообразном молекулярном состоянии, 1. Линейчатые в газообразном атомарном состоянии, Н Н 2 3.Непрерывные или сплошные тела в твёрдом и жидком состоянии, сильно сжатые газы, высокотемпературная плазма

Сплошной спектр излучают нагретые твёрдые тела. Сплошной спектр, согласно Ньютону, состоит из семи участков — красного, оранжевого, жёлтого, зелёного, голубого , синего и фиолетового цветов. Такой спектр даёт также высокотемпературная плазма. Сплошной спектр

Состоит из отдельных линий. Линейчатые спектры излучают одноатомные разрежённые газы. На рисунке показаны спектры железа, натрия и гелия. Линейчатый спектр

Спектр, состоящий из отдельных полос, называется полосатым спектром . Полосатые спектры излучаются молекулами. Полосатые спектры

Спектры поглощения — спектры, получающиеся при прохождении и поглощении света в веществе. Газ поглощает наиболее интенсивно свет именно тех длин волн, которые сам он испускает в сильно нагретом состоянии. Спектры поглощения

Спектральный анализ Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определённый набор длин волн. Метод определения химического состава вещества по его спектру. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.

Видимый свет — это электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,01014—7,51014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). Диапазон видимого света- самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Марс в видимом излучении Видимый свет

Электромагнитное излучение, невидимое глазом в диапазоне длин волн от 10 до 380 нм Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами. Ультрафиолетовое излучение

— это невидимое глазом электромагнитное излучение, длины волн которого находятся в диапазоне от 8∙10 –7 до 10 –3 м Фотография головы в инфракрасном излучении Голубые области — более холодные, жёлтые — более тёплые. Области разных цветов отличаются по температуре. Инфракрасное излучение

Вильгельм Конрад Рентген — немецкий физик. Родился 27 марта 1845 г. в городе Леннеп , близ Дюссельдорфа. Рентген был крупнейшим экспериментатором, он провёл множество уникальных для своего времени экспериментов. Наиболее значительным достижением Рентгена было открытие им X-лучей, которые носят теперь его имя. Это открытие Рентгена радикально изменило представления о шкале электромагнитных волн. За фиолетовой границей оптической части спектра и даже за границей ультрафиолетовой области обнаружилась область ещё более коротковолнового электромагнитного излучения, примыкающего далее к гамма-диапазону . Рентгеновские лучи

При прохождении рентгеновского излучения через вещество уменьшается интенсивность излучения за счёт рассеяния и поглощения. Рентгеновские лучи применяются в медицине для диагностики заболеваний и для лечения некоторых заболеваний. Дифракция рентгеновских лучей позволяет исследовать структуру кристаллических твёрдых тел. Рентгеновские лучи используются для контроля структуры изделий, обнаружения дефектов.

Шкала электромагнитных волн включает в себя широкий спектр волн от 10 -13 до 10 4 м. Электромагнитные волны делятся на диапазоны по различным признакам (способу получения, способу регистрации, взаимодействию с веществом) на радио- и микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи. Несмотря на различие, все электромагнитные волны обладают общими свойствами: они поперечны, их скорость в вакууме равна скорости света, они переносят энергию, отражаются и преломляются на границе раздела сред, оказывают давление на тела, наблюдаются их интерференция, дифракция и поляризация. Шкала электромагнитных волн

Диапазоны волн и источники их излучения

Спасибо за внимание! Домашнее задание: 80, 84-86

Успейте воспользоваться скидками до 70% на курсы «Инфоурок»

Описание презентации по отдельным слайдам:

-Исчезло ровно две тысячи пятьдесят шесть марок. Я дважды пересчитывал сумму. -Кого вы подозреваете в преступлении? -Откровенно говоря, не знаю, — ответил кассир. -Расскажите, как было дело. -Это произошло при следующих обстоятельствах. Я пересчитывал деньги. Вдруг в комнате потухла лампа. Я поставил на стол стул, вскарабкался на него и схватился за лампу. От сильного ожога я пошатнулся и свалился на пол. Некоторое время я был без сознания, а очнувшись, увидел весь этот беспорядок. Деньги исчезли. По телефону я известил о случившемся заводскую охрану. Вот, пожалуй, и все, что я могу вам сообщить. Я обвиняю вас в краже денег! Все рассказанное вами — сплошной вымысел, так как. Что сказал инспектор Варнике кассиру?

Тема: Излучение и спектры. Шкала электромагнитных излучений. Автор: Булгакова О.М.

Это излучение нагретых тел. Тепловое излучение, согласно Максвеллу, обусловлено колебаниями электрических зарядов в молекулах вещества, из которых состоит тело. Тепловое излучение

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Часть энергии идёт на возбуждение атомов. Возбуждённые атомы отдают энергию в виде световых волн.

Катодолюминесценция Свечение твёрдых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция Излучение, сопровождающее некоторые химические реакции. Источник света остаётся холодным.

Фотолюминесценция Некоторые тела сами начинают светиться под действием падающего на них излучения. Светящиеся краски, игрушки, лампы дневного света.

Источники света Холодные Горячие Холодное свечение-люминесценция Тепловое излучение лампы дневного света газоразрядные трубки полярные сияния свечение экранов плазменных телевизоров электролюминесценция фотолюминесценция фосфор хемилюминесценция Светлячки, трупные газы, микроорганизмы катодолюминесценция свечение экранов телевизоров с ЭЛТ Солнце, лампа накаливания, пламя

Сплошной спектр излучают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы и также высокотемпературная плазма. Сплошной спектр, согласно Ньютону, состоит из семи участков — красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Сплошной спектр

Состоит из отдельных линий. Линейчатые спектры излучают одноатомные разрежённые газы. Линейчатый спектр http://files.school-collection.edu.ru/dlrstore/669bee8b-e921-11dc-95ff-0800200c9a66/4_3.swf

Спектр, состоящий из отдельных полос, называется полосатым спектром. Полосатые спектры излучаются молекулами. Полосатые спектры

Виды спектров 2.Полосатые в газообразном молекулярном состоянии, 1.Линейчатые в газообразном атомарном состоянии, 3.Непрерывные или сплошные тела в твёрдом и жидком состоянии, сильно сжатые газы, высокотемпературная плазма

Спектры поглощения — спектры, получающиеся при прохождении и поглощении света в веществе. Газ поглощает наиболее интенсивно свет именно тех длин волн, которые сам он испускает в сильно нагретом состоянии. Спектры поглощения http://files.school-collection.edu.ru/dlrstore/9da42253-f827-46b6-b37f-a7c9379ae49f/9_123.swf

Спектральный анализ Атомы любого химического элемента дают спектр, непохожий на спектры всех других элементов: они способны излучать строго определённый набор длин волн. Метод определения химического состава вещества по его спектру. http://files.school-collection.edu.ru/dlrstore/aaf2f40a-ba0d-425a-bd93-884731b13b87/9_158.swf

Задание №1 В какой смеси газов (спектры 1, 3, 4) содержится гелий (2)? 1 2 3 4 Ответ : 4

Задание №2 На рисунке изображены спектры излучения водорода (1), гелия (2), натрия (3). Какие из этих элементов содержатся в смеси веществ? (4) 1 2 3 4 Ответ : все

Задание 3 . 1242 год. На льду Чудского озера с тевтонскими рыцарями, закованными в железо, яростно сражались воины Александра Невского. В разгар сражения темная северная часть небосвода стала светлеть. Свет был необычный. Как будут где-то за горизонтом зажглась гигантская свеча, пламя которой, колеблемое ветром, вот-вот готово погаснуть. Затем небо прорезал длинный зеленый луч и тут же пропал. Через мгновение над горизонтом появилась светящаяся зеленоватая дуга. Она становилась все ярче и ярче, поднималась все выше и выше. Вдруг из нее вылетел сноп ярких подвижных лучей — красноватых, бледно-зеленых, фиолетовых. Необычный свет озарил снег, воинов. — Небесное знамение!— заговорили русские, крестясь. Небесное знамение Какое природное явление наблюдали воины Александра Невского?

Задание 4 «В одну из темных ночей солдат, стоявший на берегу моря, узрел невиданное. У самой кромки прибоя сверкнул слабый свет и. побежал по берегу цепочкой светящихся пятен! Вот они совсем уже рядом, в нескольких метрах. На песке стали явно видны светящиеся следы. босой ноги. Они вспыхивали и тут же, через несколько секунд гасли. Кто-то невидимый шел по песку, оставляя огненные следы! Замерший от ужаса часовой едва дождался смены. А утром стало известно: пропал один из жителей поселка — вышел из дома и не вернулся. Сомнений не было ни у кого: военный форт европейцев посетил сам дьявол! И прихватил с собой в ад человека. Но этим дело не кончилось. Огненные следы появлялись теперь у поселка вновь и вновь. Причем каждый раз дьявол выбирал ночи потемнее, когда тучи закрывали небо и сильно шумело море. И каждый раз из поселка исчезали люди» История, которая случилась во времена, когда голландцы завоевали Новую Гвинею. Как могли возникнуть на песке светящие следы? За счёт какой энергии возбуждаются атомы?

Самостоятельная работа Ответы: 1 вариант – 2, 4, 4, 1 2 вариант — 2, 4, 1, 4

Презентация была опубликована 4 года назад пользователемЛиана Мишухина

Похожие презентации

Презентация по предмету «Физика и Астрономия» на тему: «Методическая разработка урока по физике Тема: Спектры и излучения Класс: 11.». Скачать бесплатно и без регистрации. — Транскрипт:

2 Методическая разработка урока по физике Тема: Спектры и излучения Класс: 11

3 Цель : систематизировать знания о различных видах излучений и спектрах; познакомить с методом спектрального анализа; объяснить на качественном уровне происхождение линейчатых спектров испускания и поглощения. Задачи: с целью формирования научного мышления рассмотреть причинно – следственные связи между строением вещества, его состоянием и типом спектра; продемонстрировать интегрированный подход к изучению явлений природы.

4 «… Видел радугу на небе, На востоке, и тихонько Говорил: « Что там, Нокомис?» Нокомис отвечала: « Это Мускодэ на небе; Все цветы лесов зеленых, Все болотные кувшинки, На земле, когда увянут, Расцветают снова в небе.» По мотивам легенды североамериканских индейцев.

6 Дисперсия света Показатель преломления света, как установил Ньютон, зависит от его цвета. Цвет же определяется частотой колебаний (или длиной световой волны). Зависимость показателя преломления света от частоты колебаний называется дисперсией. Дисперсия приводит к тому, что луч белого света, входящий в стеклянную призму, разлагается на свои составляющие цвета: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый – спектр белого света.

8 Тепловое излучение Это самый распространенный и простой вид излучения Тепловыми источниками излучения являются: Солнце ПламяЛампа накаливания

9 Электролюминесценция Это явление наблюдается при разряде в газах, при котором возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Северное сияние Рекламные надписи

10 Католюминесценция Это свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря католюминесценции светятся экраны электронно – лучевых трубок телевизоров. Первый телевизор КВН – 49 Электронно – лучевая трубка телевизоров

11 Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света,причем источник света остается холодным. Светлячок Кусок дерева, пронизанный светящейся грибницей Рыба,обитающая на большой глубине

12 Фотолюминесценция Под действием падающего излучения, атомы вещества возбуждаются и после этого тела высвечиваются. Лампа дневного света Елочные игрушки покрывают светящими красками

13 Распределение энергии в спектре Та энергия, которую несет с собой свет от источника,определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Важнейшая характеристика излучения – распределение его по частотам или длинам волн. Это распределение характеризуется спектральной плотностью интенсивности излучения. Кривая зависимости спектральной плотности интенсивности излучения от частоты в видимой части спектра электрической дуги.

14 Спектральные аппараты Ход лучей в спектрографе 1. Через узкую щель проходит пучок света. 2. Линза 1 делает пучок света параллельным. 3. Призма раскладывает белый свет по длинам волн на спектр. 4. Линза 2 собирает разошедший пучок излучения по длинам волн в разные концы экрана. 5. Фотопластинка фиксирует спектр и получается спектограмма. Призменный спектральный аппарат – спектрограф.

16 Непрерывные спектры. Непрерывные спектры дают тела, находящиеся в твердом, жидком состоянии, а также сильно сжатые газы. Распределение энергии по частотам в видимой части непрерывного спектра

17 Линейчатые спектры. Примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Линейчатые спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы излучают строго определенные длины волн.

18 Полосатый спектр Элетронный полосатый спектр азота N 2 Полосатые спектры в отличие от линейчатых спектров создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

19 Спектры испускания и поглощения Спектры испускания: 1- сплошной; 2- натрия; 3- водорода; 4- гелия. Спектры поглощения: 5- солнечный; 6- натрия; 7- водорода; 8- гелия.

20 Спектральный анализ Метод определения химического состава по его спектру. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определенный набор длин волн. Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные в 1814 году И. Фраунгофером. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий. С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле. 1.1.

21 2. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Благодаря универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. Лабораторная электролизная установка для анализа металлов «ЭЛАМ». Установка предназначена для проведения весового электролитического анализа меди, свинца, кобальта и др. металлов в сплавах и чистых металлах. Стационарно – искровые оптико — эмиссонные спектрометры «МЕТАЛСКАН –2500». Предназначены для точного анализа металлов и сплавов, включая цветные, сплавы черных металлов и чугуны.

22 Электромагнитные излучения радиоволны Инфракрасное излучение Видимый свет Ультрафиолетовое излучение Рентгеновское излучение Гамма — излучение

23 Шкала электромагнитных излучений. Шкала электромагнитных волн простирается от длинных Радиоволн до гамма – лучей. Электромагнитные волны различной Длины условно делят на диапазоны по различным признакам ( способу получения, способу регистрации, характеру взаимодействия с веществом).

24 Все виды излучений имеют, по существу, одну и ту же физическую природу. Луи де Бройль Виды излучений Длина волны Скорость распростра — нения в вакууме ПолучениеРегистра ция Харак — ка, свойства Применение Радиоволны Инфракрас- ное излучение Видимый свет Ультрафиоле товое излучение Рентгеновс- кое излучение -излучение

25 Виды излучений Длина волныСкорость распрост- ранения в вакууме ПолучениеРегистра- ция Харак — ка, свойства Применение Радиоволны 10 км (3х10^ 4 – 3х10 ^12 Гц) C= 3×10^8Транзистор- ные цепи Резонатор Герца, Когерер, антенна Отражение, Преломление Дифракция Поляризация Связь и навигация Инфракрас- ное излучение 0,1м – 770 нм (3х10^ 12 – 4х 10 ^14 Гц) C=3×10^8Электричес- кий камин Болометр, Фотоэлемент термостолбик Отражение, Преломление Дифракция Поляризация Приготовление пищи Нагревание, сушка, Тепловое фотокопирование Видимый свет 770 – 380 нм (4х10^ 14 – 8х10 ^14 Гц) C=3×10^8Лампа накаливания, Молнии, Пламя Спектрограф, Болометр Отражение, Преломление Дифракция Поляризация Наблюдение за видимым миром, Преимущественно путем отражения Ультрафио летовое излучение 380 – 5 нм (8х10^ 14 – 6х 10 ^16 Гц) C=3×10^8Разрядная трубка, углеродная Дуга Фотоэлемент Люминесцен ция, болометр Фотохимичес кие Лечение заболеваний кожи, уничтожение бактерий, стороже- вые устройства Рентгеновс- кое излучение 5 нм– 10^ –2 нм (6х 10^ 16 – 3х10 ^19 Гц) C=3×10^8Рентгеновс- кая трубка Фотопластин ка Проникаю- щая способность Дифракция Рентгенография, радиология, обнаружение под- делок произведений искусства — излучение 5×10^ ^-15 м C=3×10^8Циклотрон Кобальт — 60 Трубка Гейгера Порождаются космически ми объектами Стерилизация, Медицина, лечение рака


Статьи по теме